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Chapter 1

Motivation

Java became in the last years a popular language. The object-oriented lan-
guage eases the development of user-level applications by hiding operating
system and hardware specific features. The hardware independent Java bi-
nary code allows the compact distribution of Java applications for different
system architectures without recompilation. The execution environment -
the Java Virtual Machine - is responsible to run the binary code on a specific
hardware and operating system. Therefore, the JVM as system specific part
has to be adapted to a new operating system to execute Java applications.

An existing Java Virtual Machine (JVM) shall be ported to L4/Fiasco. The
intention is to allow Java applications the entry to the L4 world. The L4
Environment and a Java Virtual Machine are the base of this work. The goal
is to run Java applications as “native” L4 tasks. The port shall also be the
base for future analysis of predictability in the ported Java Virtual Machine.

In this paper, I reviewed some freely available JVM and describe my de-
cision to port the Java Virtual Machine Kaffe to L4/Fiasco. In the next step
I show, how the functionality provided by Kaffe to Java applications can be
mapped/adapted to L4 services. In the implementation chapter I describe,
how the adaptation was achieved and which problems arised. Additionally
I compare Kaffe on L4, L4Linux and Linux on the basis of two Java test
applications.
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Chapter 2

Fundamentals

2.1 Dresden Real-Time Operating System

The Dresden Real-Time Operating System (DROPS) is a research project at
the TU Dresden. The primary goal is to support application with Quality
of Service requirements. Various server and application programs run on top
of a microkernel, whereby they are divided into real-time and time-sharing
components.

2.1.1 Microkernel

The heart of the operating system is the microkernel Fiasco
[Hohmuth, 1998, Hohmuth, 2002] that offers a minimal set of function-
ality. The kernel provides isolation through separation of address spaces,
execution instances known as threads and communication between threads
called inter process communication (IPC). All other required functionality
has to be implemented as service running at user level in the non-privileged
mode of the CPU.

Fiasco belongs to a family of L4 kernels like Pistachio and Hazelnut
developed at the University of Karlsruhe [L4Ka, 2004]. The L4 ABI
describes the interface for the microkernels, which was initially designed by
Jochen Liedtke [Liedtke, 1996].

The intention of the microkernel is to force a better system design, to
limit the effects of errors caused by a service and to allow a good portability
and maintainability by a tiny kernel. A single failure of a service like a net-
work device driver cannot affect the kernel and therefore other applications
that are not depend on it.
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2.1. DRESDEN REAL-TIME OPERATING SYSTEM

2.1.2 L4Env - an environment on top of the L4 kernel

The L4 Environment (L4Env) is a programming environment [L4Env, 2003]
for applications on top of the L4 microkernel family. L4Env is developed as
part of DROPS and its intention is to provide a minimal set of functions,
which developers often require for application development. The environment
consists of services, which a monolithic operating system would provide such
as protection of critical sections, page fault handling, resource management
of memory and files.

Threads

The L4Env thread library provides a basic abstraction to native L4 threads.
It is a basis for native L4Env applications and a higher-level thread abstrac-
tion. It provides functions to create and destroy threads, supports shutdown
callbacks, manages thread local data and priority and stack handling. It
simplifies the usage of native L4 threads by allocating the memory for the
stacks from the data space manager and provides thread IDs independent
from the native L4 threads.

Semaphores and Locks

The L4Env provides a task local counting semaphore and lock implemen-
tation for protecting critical sections whereby the lock package uses the
semaphore package. In case of no contention on the semaphore the thread,
which wants to enter the critical section, modifies atomically the semaphore
counter. If the critical section is not free and a thread cannot enter, than it
calls per IPC the task local semaphore thread.

The separate semaphore thread in each address space serializes the
multiple attempts to enter a critical section. The kernel delays the call-
ing thread until the semaphore thread is ready to receive the IPC. The
semaphore thread then decides to queue the calling thread in the waiting
list. If a thread releases the semaphore, the semaphore thread will send
an IPC to the next waiting thread in the queue and this thread enters the
critical section.

Each IPC is usable with timing constraints, which limits the time for
sending or receiving a IPC to another thread. The semaphore library uses
this IPC feature to provide critical sections with timeouts. If the attempt
to enter cannot be satisfied on time, the kernel will cancel the IPC and will
not allow the calling thread to enter the critical section.
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2.2. JAVA AND JAVA VIRTUAL MACHINES

C libraries

Currently two different C libraries are available for application develop-
ment. The Oskit [Oskit, 2002] was developed at the University of Utah
and adapted for the usage by L4 applications. Currently the Dietlibc
[Dietlibc, 2004] is also adapted to the L4Env, because it is smaller and
more flexible to handle then the Oskit. The Dietlibc supports the known
POSIX functions for file handling like open, read, write, close. A naming
service is responsible for resolving files and paths and allows the usage of
different file providers, which the L4 virtual file system (L4VFS) provides.

Both C libraries provide the memory management for applications by
supporting the usage of malloc and free. They hide the concept of data
spaces used by the L4Env [Aron et al., 2001]. A data space is a
container that can contain different types of memory. The data space
manager (dm phys) owns the available physical memory. The region mapper
(l4rm) manages an address space and is responsible for allocating virtual
memory regions of the address space and to invoke the responsible data
space manager to resolve page faults.

The C library map functions like printf, fprintf to the Log respec-
tively the Con server to provide outputs. The two packages log and con
are responsible for console input/output. The log server provides a basic
textual console output. Con is a graphical console server that provides
virtual consoles that it multiplexes to one visible graphic screen.

2.2 Java and Java Virtual Machines

2.2.1 Architecture

Java is a set of technologies developed by SUN Microsystems. The language
Java is a high level object oriented programming language that a compiler
translates to hardware and operating system independent bytecode. The
language and the bytecode are developed to support portable code without
recompilation of the source code on top of different hardware architectures
and operating systems.

The language uses implicit memory management, platform indepen-
dent application programming interfaces (APIs) and dynamically loaded
code/classes. The necessary environment to execute the bytecode is the Java
Virtual Machine (JVM) [Lindholm, Yellin] - an abstract machine that
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2.2. JAVA AND JAVA VIRTUAL MACHINES

executes the binary code on top of an operating system by using the specific
services of that platform. First versions only worked as pure interpreter and
were known as not performant. Today the JVMs often use compilers that
transform the binary code into machine code and then execute it, known as
just in time compilation (JIT).

Furthermore, Java is well known and used because of its high level
concepts and programming abstractions for application development of
platform-independent components (J2EE). A detailed description about the
internal of a JVM can be found in [Venners, 1999] and about J2EE at
[SUN, 2004].

2.2.2 Available Java Virtual Machines

A wide variety of Java Virtual Machines (JVM) were and are developed for
different purposes [Friedman, 2002]. In the next sections I describe some
of them, free and non-free implementations. For the port we needed an open
source variant, so that we can freely distribute it with DROPS.

GNU Compiler for Java - GCJ

GCJ is a part of the GNU Compiler Collection (GCC) that is open source
and widely used especially with Linux distributions. GCJ is an optimizing
compiler for the Java programming language, which can compile

• Java source code directly to native machine code,

• Java source code to Java bytecode (class files) and

• Java bytecode to native machine code.

The GCJ uses a runtime library that provides the core class libraries, a
garbage collector and a bytecode interpreter for mixed compiled and inter-
preted applications. The compiled applications have to be linked against the
runtime library.

The documentation of the GCJ describes that in order to port the GCJ,
the thread layer, the file handling layer and the signal layer [GCJ, 2004]
must be modified. Additionally some modifications at the core GCC for the
exception handling and a mutex and condition variable implementation will
be necessary.
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2.2. JAVA AND JAVA VIRTUAL MACHINES

Jikes Research Virtual Machine

The Jalapeo project [Alpern et al.] was renamed to the Jikes Research
Virtual Machine (RVM) in October 2001, because since it is available as open
source. The IBM T.J. Watson Research Center [IBM, 2004] develops RVM.

The virtual machine is implemented in the Java programming language and
is thought for academic and research purposes. The intention is to provide a
flexible testbed for prototyping new virtual machine technologies. To build
the Jikes RVM another VM is needed to run the two Jikes RVM compilers on
Jikes RVM class files, because the entire RVM and its compilers are written
in Java. Blackdown, Kaffe and the JVM from SUN can be used for that
purpose.

The also known and freely available Jikes compiler [Jikes, 2004] is a Java
source code to Java bytecode compiler and must not be mistaken with the
above mentioned RVM compilers. It is a separate project and can be used,
but has not, to compile the bytecode for the RVM.

JVM by SUN and Blackdown

SUN Microsystems distributes its Java development kit and the virtual ma-
chine under its own license. The Blackdown team is a group responsible for
porting Sun’s Java software to Linux and has licensed the source code.

SableVM and LaTTe

The Sable Research Group at the McGill University develops the SableVM,
which is a bytecode interpreter written in C [SableVM, 2004]. LaTTe
is developed at the Seoul National University [LaTTe, 2004], which is a
virtual machine with a Just In Time (JIT) compiler. The main goal is to
improve the performance of the JIT compiler and it was initial based on Kaffe
0.9.2, but meanwhile is widely modified. Both VMs are still in research and
development state.

2.2.3 Kaffe

Kaffe is an open source implementation of a Java Virtual Machine distributed
under GPL. It is implemented in the programming language C and supports
an impressive long list of different system platforms [Kaffe.org, 2004].
Kaffe operates as Interpreter or as JIT(Just in Time) compiler. It uses
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2.3. DECISION FOR KAFFE

clearly separated architecture and operating system specific files and direc-
tories. Kaffe provides interfaces for the thread library, the critical section
implementation, the garbage collector and partially for the file handling. The
intention behind the interfaces is to support ports to new platforms, whereby
the core of the virtual machine — the class loader and the execution engine
— do not have to be modified.

2.3 Decision for Kaffe

I came to the decision to use Kaffe for the port to DROPS by using L4Env,
because it is clearly structured and it uses interfaces for platform depend
services. I can use the L4Env services directly without special emulations of
libraries or services. I decided not to use the GCJ, because adaptation to the
GCC would be necessary. The Jikes RVM intention is to be a testbed and
another JVM would be necessary to bootstrap Jikes RVM. SableVM and
LaTTe are interesting and potential candidates, but because they are still
under development I did not decide to use them. SUN’s VM respectively the
Blackdown VM could not be used because of their licensing issues.
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Chapter 3

Design

3.1 Concepts

A Java Virtual Machine (JVM) is a runtime environment for executing pro-
grams in the Java class format. The JVM offers services and libraries, which
the operating system usually provides. Input and output of data, thread
handling and critical section protection are some of them. Typically the
JVM itself is not an operating system, so it acts as intermediary. The JVM
uses the specific services and mechanism of the operating system or has to
simulate these parts, which the operating system does not support or pro-
vide directly. In addition, the JVM itself requires the specific services of the
operating system to protect its own data structures, to use memory, files and
threads. In the next sections I will discuss how the JVM can use and/or can
map the provided and required mechanism by using the L4Env services and
which additional solutions are necessary.

3.2 Threads

The Java language directly supports the concept of threads, therefore the
JVM has to handle threads whether the operating system provides thread
support or not. The Virtual Machine has to map the Java threads to native
threads, which the operating system offers directly to applications, in our
case the L4 threads. I will use the term of native threads to describe in gen-
eral the possible mappings of the threads. In the following considerations, I
only discuss the case of a Java Virtual Machine that uses only one task per
Java application. Usually a JVM uses only one task. Kaffe has no support to
distribute a single Java application over many tasks. An interesting attempt
to use more than one task by a JVM is published in [Back, 2000].
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3.2. THREADS

If the operating system supports threads directly, an one to one mapping
of Java threads to native threads is possible. Otherwise, the JVM has to
map all Java threads to one native thread respectively to the one execu-
tion instance of the task, known in Java as ’green threads’. If an user-level
thread library is available on the operating system, than the JVM can use
this instead of an own thread implementation. Also a thread mapping m:n
is possible. These variants are discussed in the next sections.

3.2.1 Thread mappings

Green and User-level threads

Green threads respectively user-level threads are useful for platforms with-
out support for threads by the operating system. With that approach, the
JVM can switch fast between threads, because no system call is necessary.
A system call causes the switching to the kernel, the heart of the operating
system. Many load/store operations are necessary from and to the memory,
whereby the CPU maybe has to replace cache entries now used by the ker-
nel, previously by the application. The gap between the high frequency of
a modern CPU, the low one of the memory and the necessary operations to
store/load information to/from the memory worsen the situation. Partially
the large caches of modern CPUs compensate the problem.

However, there are some problems to consider. A JVM respectively the
library of the user-level threads has to limit blocking calls to the operating
system. The operating system does not know other threads of the applica-
tion, which might be runnable. Additional a timing mechanism in user-mode
is necessary to interrupt user-level threads, which are non-cooperative and
consume too much execution time, so that the JVM respectively the user-
level thread library can interrupt the threads. On systems with more than
one processing unit, this user-level thread handling limits the maximal paral-
lelism, because the kernel does not know that the JVM uses an own threading
system. The kernel cannot distribute the user-level threads over all available
processing units. Additional the management of the threads, priorities and
scheduling must be implemented, which is normally done by the kernel or by
one of its services.

Green threads are the solution for operating systems without support for
native threads. I have not choose this approach for the port of Kaffe, be-
cause the Fiasco kernel directly implements threads and the L4 thread library
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3.2. THREADS

offers additional support.

Partly mapping to native threads

I think mapping of some (more) Java threads to some (less) native threads
can be used for optimizations, for example, when system calls are expensive.
If threads often call the operating system or services, which cause a long
waiting period, than the JVM can map these Java threads directly to native
threads. The service respectively the operating system blocks the thread
until the job is finished. All other threads can process jobs that do not use
blocking calls. If switching between them is necessary then the JVM will do
it in user-mode to reduce the number of system calls.

The problem is to determine the threads, which often use blocking calls. If
that cannot be done in advance, then a dynamical adaptation and mapping
of Java to native threads is necessary. It is not always possible to determine,
whether a function call of a service uses a blocking system call. Additionally
user-level thread management is necessary. The JVM also should know how
many threads could really run in parallel, to choose an appropriate mapping
to support maximal scalability.

This approach is complex and has to be researched further in respect to use-
ful advantages, such as performance or resource usage. Kaffe has no direct
support for such a scenario. Therefore, some modifications on the core JVM
would be necessary. For this initial port of Kaffe to DROPS, this approach
would exceed the available time.

Direct mapping

Modern operating systems support the thread concept directly. The kernel
is responsible for the management of processes and threads. The scalability
of an application is not limited due to the usage of user level threads on
multiprocessor systems. Switching between threads is not as fast as in user-
mode but acceptable. No separate thread handling is necessary, managing
wait queues or run queues; priority and scheduling decision are part of the
kernel and/or of a service. Direct Java to native thread mapping reduces
the complexity of the JVM. Parts like different scheduling algorithms can be
done by special services of the system environment.
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3.2. THREADS

3.2.2 Adaptation of the L4Env thread library to Kaffe

Kaffe directly supports different thread implementations by defining an ab-
stract interface. The interface is a data structure with some function pointers,
which the used thread system has to implement. The expected functionalities
are

• to create and destroy threads,

• to change priorities of threads,

• to map the data structures from java to native threads,

• to stop and resume all threads,

• to determine whether a pointer is on the stack of a thread or not and

• to determine the stack range and the remaining space on the stack.

The thread library of the L4Env provides the basic functionality for the
thread handling. A problem is the creation of new threads, because in Kaffe
the newly created threads have to wait until the creating thread stored the
runtime information in its internal data structures. The data structure can
be prepared before the create call, but the identification of the new thread
is not known until it becomes runnable. The L4Env thread package does
not support a previous reservation of thread identifications or the creation
of suspended threads.

Kaffe uses a function jthread_current to ask the thread implementation
about information of the actual running thread. The function seeks the
intern data structures for the thread identification. In the case that the
identification of the newly created thread is not stored in the data structure
yet, the function will not find the requested information and it will throw an
exception.

I introduce a function, which the JVM has to call instead of the original
start function to suspend the created thread. The new thread has to wait
until the original thread acknowledges the storage of the new thread iden-
tification. After the notification the new thread becomes runnable and can
invoke the original start function.

Kaffe itself provides for Unix/Linux platforms a green thread implemen-
tation, called unix-jthread, and a version for the usage with the pthread
library, called unix-pthread. I decided to not use these implementations to
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3.2. THREADS

adapt to DROPS, because L4Env does not provide a pthread library and the
green-thread implementation would not use the full abilities of the microker-
nel like support for real time threads. The flexible facility of Kaffe to adapt
new thread systems allows me to use the thread library of the L4Env directly.

Resuming and stopping threads is necessary for the garbage collector. The
determination whether a pointer is on the stack or not is necessary for Kaffe‘s
own critical section implementation. Kaffe uses the stack range knowledge
of each thread to avoid stack overflows. Additionally the garbage collector
uses the knowledge to scan the stack for Java object references. I will discuss
these requirements in the following sections.

3.2.3 Garbage Collector

The JVM allocates memory for instances of classes with instructions
like new, newarray and others [Lindholm, Yellin], but no instruction
explicitly releases the memory. The Java VM specification does not describe
how memory is recycled respectively that this is necessary, but because
no computer has infinite memory JVMs uses garbage collectors that are
responsible for the detection and freeing of memory of unused Java objects.

Venner describes in [Venners, 1999] garbage collection algorithms
and [Back, 1999] describes Kaffe‘s algorithm more specific. Kaffe uses a
tracing garbage collector that follows the graph of object references starting
with root nodes. The collector marks the located objects. After the complete
trace, Kaffe can free unmarked objects, because they are unreachable.

Kaffe’s garbage collector has to stop all running threads beside itself.
It scans the stack of these threads to find references to Java objects. The
garabage collector stops the threads, because it does not protect its internal
data structures for concurrent access. A garbage collection is therefore an
expensive operation in terms of performance. Worse is the fact that the
stopped threads cannot do anything like receiving events from the GUI,
packets from the network and other jobs, where informations can be lost
when they are not processed on time.

For systems with one processing unit and a priority based thread scheduler,
stopping and resuming threads can be achieved easily. The garbage collector
receives a higher priority than the other JVM threads to ensure no other
thread can run. That means, that the garbage collector must not use
functions that block him, because then the operating system can schedule
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3.2. THREADS

another Java thread, which must not run. This solution does not work
on systems with more than one processing unit, like Symmetric Multi
Processing (SMP) or Hyperthreading. Therefore, another approach will be
necessary.

The system call l4_thread_ex_regs can set a running thread to a
new address of execution - initiated by another thread. The garbage
collector use l4_thread_ex_regs to set the threads to a function that saves
the state of a thread and calls a sleep function. After it has finished, the
garbage collector uses the system call to invoke another function, which
wakes up all threads, restores the state and restarts the execution.

3.2.4 Priorities and Scheduling

Java threads use priorities to privilege some threads in execution. Priorities
are described by numbers and a higher number means a higher priority.
Kaffe lets the schedule of threads to the OS respectively the thread im-
plementation. Two constants of the “java.lang.Thread” package define
the number of available priorities. Currently SUN’s JVM provides 10 Java
priorities, therefore Kaffe also use 10 for compatibility reasons. In general,
more Java priorities are possible, for example for real time threads. Java
threads use 10 Java priorities, the native threads for the garbage collector
and the finalizer require as highest prior threads another one, so for Kaffe
11 native L4 priority levels are necessary.

Some operating systems offer insufficient priorities for mapping Java
thread priorities directly to native thread priorities. They have to map
a couple of java priorities to only one priority of the operating system
and therefore scheduling is not done correctly as expected, shown in
[Pinilla et al., 2003] for SUN’s JVM. A possible solution was published
in [Pinilla et al., 2003].

Fiasco supports 128 priorities. Therefore, a direct mapping between
Java and native thread priorities is possible. The JVM provides fixed
priority scheduling, whereby threads with equal priority are scheduled in
round-robin fashion. Fiasco schedules threads with the same algorithm. No
additional adaptation will be necessary.
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3.3. CRITICAL SECTIONS

3.3 Critical sections

Kaffe has several layers to the locking/protecting abstractions. The JVM has
to protect internal data structures, because of concurrently executed threads,
to avoid race conditions and to ensure correct state of the VM. Furthermore,
the Java language itself supports the usage of monitors to protect critical
sections, which are marked by the keyword synchronized. This keyword
can be associated with methods or blocks.

class SynchronizationExample{

public synchronized void a(){

...

}

public void b(Object a){

synchronized(a){

...

}

}

}

If a thread tries to invoke a method or a block that is synchronized, it
has to obtain the monitor for this object. Then the thread can execute the
method and will release the monitor after it finished the execution of the
method.

Kaffe implements the several layers of locking by its own “Fast Lock-
ing Scheme” [Baker et al., 2000] and the support of the provided
synchronization and protection primitives of the operating system. Kaffe
tries to minimize the usage of the operating system specific primitive, inter-
nally called “heavy locks”, by using atomic compare-and-swap operations.
Only when another thread holds the lock or a compare-and-swap operation
fails, Kaffe acquires a “heavy lock”. Kaffe offers two interfaces to implement
the synchronization and protection primitives, a semaphore interface and a
mutex/condition variable interface.

The pthread library uses mutex/condition variables for synchroniza-
tion and protection. A mutex protects shared data resources and only allows
one thread to access the resource i.e. to enter the critical section. Mutexes
allow synchronization by controlling access to data. Condition variables are
used to synchronize threads depending on a value of data. If threads require
a certain value to continue their execution, then they will have to continually
comparing the value. If it is required in a critical section then the lock will
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3.4. JAVA EXCEPTION HANDLING

have to be freed after each comparison, so that other threads can enter
the critical section and maybe fulfill the condition. To prevent polling, a
programmer can use condition variables and associated locks in the pthread
library. If a thread waits for a condition variable then the responsible
function will automatically and atomically unlock the associated mutex vari-
able and lock it again, when another thread will signal the fulfilled condition.

The Semaphore interface needs a binary semaphore implementation
with the ability to enter a semaphore with time constraints. L4Env provides
a Semaphore package with these features. L4Env has no support for the
pthread library and no support for condition variables, therefore I implement
this semaphore interface to provide the required synchronization/protection
primitive.

3.4 Java exception handling

The Java language uses exceptions to signal an error or an unexpected situ-
ation. A Java program or the JVM can generate exceptions. For instance,
when the program detects an illegal situation or the JVM has not enough
memory. The Java application can catch such Java exceptions if it expect
them. The following abstract example illustrates such a situation:

public void calc(int a, b){

...

try{

add(a,b);

}catch(InvalidValueException){

System.out.println("Only positive values are supported");

return;

}

...

}

private void add(int a, int b) throws InvalidValueException{

if ( a < 0 || b < 0) throw new InvalidValueException();

else ...

}

The JVM handles the Java exceptions at runtime by backward seeking for a
“catch” handler in the trace of invoked methods. If a handler exists, than
the JVM executes the “catch” block, otherwise the JVM stops the thread
with an error message.
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Special handlings for Java exceptions are necessary, which cause a software
exception in the CPU. Errors like dividing by zero or illegal - unmapped
- memory accesses as stack overflows and null pointer accesses are two of
them. The CPU forces the causing thread into the kernel and the kernel can
identify the thread and its state, which is described by the used registers, by
the instruction pointer and the stack pointer. Kaffe provides two functions,
which the thread implementation has to call when a null pointer access
or an arithmetic exception occurs. The two functions then implement the
correct Java exception handling. Therefore, some mechanisms are necessary
to allow the kernel or services, which are responsible for such exceptions,
to notify the JVM. In the following two chapters, I describe how this is
achieved.

3.4.1 Null object and null pointer handling

Java has a special type, known as null object, which means that no instance
of a class is used by that reference. If a java program tries to use the null ob-
ject reference then the JVM will raise a null pointer exception. The JVM
specification [Lindholm, Yellin] does not specify the value of the null ob-
ject and how the JVM realizes that mechanism of detecting such null objects
accesses at runtime. The operation aconst_null [Lindholm, Yellin] of
the JVM creates such an object reference and puts it on top of the Java stack.

Kaffe implements that mechanism by mapping the null object refer-
ences to the virtual memory address zero. The JVM Kaffe expects that the
kernel never maps the first page of the address space and the usage causes a
page fault. On Unix/Linux Kaffe registers itself for the signal “SIGSEGV”
and installs a signal handler. If a Java application uses a object that is
null, the application will make a access to the first page. The CPU detects
the access with the unmapped page and forces the causing thread in the
Unix/Linux kernel. The kernel determines the reason and sends a signal
to Kaffe’s signal handler. Kaffe is now able to start the Java exception
handling for the null object access.

In the case of our microkernel Fiasco, each L4 thread is associated
with a pager thread that the kernel informs about page faults per IPC. The
pager is responsible for getting and mapping the requested page. If it is not
possible, because the address belongs to an unused area, the pager will show
an error message and the causing thread will not be runnable.
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An additional pager

To handle the null pointer accesses, the JVM could install a specialized
pager that knows about the special handling. Page faults to other pages
than the first it would forward per IPC to a standard pager like the one of
the L4RM service.

This approach has a big disadvantage. Every forwarding of a “nor-
mal” page fault causes an additional IPC to the standard pager and this
is the normal case for a pager. Page faults to the first page are specific
exceptions to determine uninitialized pointers. Therefore, I think, a little
modification of the L4RM pager is better then the performance penalty of
this solution.

Enhancement of the L4RM pager

To handle the page fault at the first page it is necessary to extend the func-
tionality of the pager. Kaffe could register its own routine that knows about
the specialized meaning and the pager calls the routine in the case of an
unresolvable page fault. Kaffe provides such a function that looks for the
last executed Java instruction. Kaffe as a (virtual) machine with an own
program counter can detect i.e. knows the position in the Java program,
where the CPU caused the exception. Therefore, the instruction to which
the Java program counter points is responsible for the access to the null ob-
ject. Consequently, the JVM generates the Java null pointer exception for
the thread. A Java application is able to catch the null pointer exception
- the JVM does not enforce the termination of the Java application in this
case.

Optimization for debugging

The JVM cannot decide whether a Java application or a bug in its implemen-
tationan caused the null pointer access. For a better differentiation between
accesses to null objects and illegal null pointers it should be possibly to map
the null object to another unmapped page. The function that handles the
unresolved page faults can then determine whether it is a problem of the
currently executed Java application, a bug in the JVM or one of the native
libraries.
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3.4.2 Arithmetic exception handling

Dividing by zero cause a software exception in the CPU. That exception
handling is not complex as the page fault handling. Similar to the null
pointer exception handling Kaffe provides a routine that has to be called
in case of arithmetic software exceptions. For that purpose, Fiasco supports
the registration of a routine in the LIDT (Local Interrupt Description Table),
which the CPU invokes in the case of an exception. On the x86 architecture
the exceptions 0 and 16 signal arithmetic exceptions. For each newly created
thread a registration in the LIDT for both exceptions is necessary.

3.5 Memory and files

Kaffe directly depends on functions provided by a C library like open, read,
malloc, fprintf, and so on. The L4Env has two C libraries, Dietlibc and
Oskit, whereby the Dietlibc was under development when I started to port
Kaffe. Even so, I decided to use the Dietlibc, because the Dietlibc intention
is to provide many small functional parts, which an application can use and
link only functionality it requires. Other reasons are the better support for
using files with the Posix functions and that the Dietlibc will replace the
Oskit C library in the future.

Kaffe’s memory usage behavior can be easily configured with parame-
ters. These parameters describe initial heap size, maximal heap size and the
size of heap increments. The C library malloc function allocates memory
dynamically from the heap. Kaffe mainly uses fprintf and friends for console
outputs. The Dietlibc maps them to the write function at the file descriptors
“stdout” and “stderr”. A server or library providing the files “stdout”,
“stderr” and “stdin” has to map these file descriptors to the services, which
are responsible for that.

Kaffe tries to ease the port for systems with no complete C library
by providing a thin indirection layer. The JVM encapsulates calls to the
C library functions with own functions, which are prefixed with “K” like
KOPEN, KREAD, KFSTAT or KSOCKET. The operating system specific part of
the Kaffe code then has to implement these functions when they differ from
the standard behavior or have a different syntax - alternatively the original
posix call can be used.
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3.6 Java native interface (JNI) and shared

native libraries

Java classes can also use native, machine specific, libraries of the operating
system they are running on. The Java Native Interface (JNI) [Liang] is a
specification that describes the usage of libraries written in the language C.
A Java program can specify a method as native and the name of the native
library that implements the method as shown in the example.

class NativeLibraryExample{

static {

System.loadLibrary("example");

}

native void helloC(void);

}

The JVM seeks for the native library when an application calls the method,
whereby the real library name depends on the operating system. For Linux
it will be “libexample.so”, for Windows “example.dll”.

Kaffe knows the symbol for a C function not until a Java application
invokes a native Java method. Therefore, Kaffe requires the help of the
L4Env to load machine specific libraries at runtime, to link them into the
VM address space and to find the C functions that Kaffe has to call.

It is also possible to link the native libraries statically to the exe-
cutable of Kaffe, but additional efforts are necessary. The core of JVM
does not know, does not use the symbols of the functions. Therefore, the
linker excludes them from the executable. In this case, the Kaffe’s building
environment would have to extract all symbols of the native libraries. Then
it would have to generate a C source code file and to link them to Kaffe,
which lists and uses the symbols. Now the JVM would be able to find the
symbols at runtime.

The L4Env provides the service “L4Exec”, which is an ELF inter-
preter that the “Loader” service uses to start L4 application at runtime. In
addition, both services are able to load libraries dynamically at runtime.
The services provide the necessary functionality and therefore an adaptation
is possible to Kaffe’s interface for loading native libraries.
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Chapter 4

Implementation

In this chapter, I describe some of the steps that were necessary to port Kaffe.
The port works for the IA32 hardware architecture and the L4v2 ABI. I use
in the context of stopping and resuming threads assembler to save and restore
the state of the threads. Therefore, modifications will be necessary for L4Env
based systems on other hardware architectures.

4.1 Kaffes configuration and build system

I decided to use the configuration and build system of Kaffe, because it
is aware of different implementations of threading systems and operating
systems. Each implementation has its own paths in the directory hierarchy
and so I introduced for the DROPS port the two necessary paths:

config\i386\drops

kaffe\kaffevm\systems\drops-l4threads

Kaffe has to be compiled and linked with the cross compiling option, oth-
erwise the build system guesses that is for the currently running system, in
our case Linux.

4.2 Thread data structure management

Each specific thread implementation has to define the jthread data struc-
tures, which Kaffe uses to describe Java threads. The data structure is a
wrapper that has to consist of the threadData data structure and additional
thread implementation specific information. The core of Kaffe uses the
threadData to describe per Java thread data, which are independent of the
underlying native threads.
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The management of the jthread data structures is part of the spe-
cific thread implementation. Kaffe uses the function jthread_current to
acquire the jthread data for the currently running thread. Additionally
Kaffe requires a facility to get all thread data structures selectively or
successively. The garbage collector requires the successively facility to
invoke for each native thread the function to scan the native stack to find
used Java objects - implemented by the function jthread_walkLiveThreads.

I decided to manage the jthread data structures in a list, which is
double linked by pointers. The L4Env thread library has the facility to
register thread local data, which the package can acquire easily (fast) back.
I use it to prevent searching the (maybe long) list of threads by assigning
the Java thread data structure jthread directly to the native thread.
jthread_current uses the local thread data feature directly to provide the
requested data structure. If a thread ends and the thread implementation
has to remove it from the list it will find the thread quickly by the L4Env
thread local data feature. Additional the predecessor and the successor
of the thread has to be updated about the removal of the termed thread
and about their new neighbors. Without the double linked list, the thread
implementation would have to scan for the predecessor from the start of the
list.

4.3 Delaying of newly created threads

Newly created thread starts its execution by getting a binary semaphore. The
critical section is not free and the semaphore is hold until the thread that
initiated the creation of the new thread has stored the runtime information.
The semaphore prevents the JVM asking for the Java thread data structure
before it is available.

4.4 Suspending and resuming threads

The L4Env thread library does not support stopping and resuming the
execution of threads. Therefore, a solution with the help of the system
call l4_thread_ex_regs is necessary. The system call disrupts the normal
execution of a thread. The original execution has to continue later, therefore
it is necessary to save the state of a thread. The language C does not
provide support for saving and restoring registers of a CPU. I have to use
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the x86 specific instructions of the assembler language.

When I stated the port, we discussed many variants, how the stop-
ping and resuming of threads can be achieved. We came to the conclusion
that the garbage collector thread has to wait until all threads have saved
their state and the last thread has to notify the garbage collector thread.
Otherwise, the resuming of the threads is not safe, because the garbage
collector cannot decide whether all threads have already saved their states.
The function to resume threads assumes that the state of each thread is saved.

In the first attempts, I suggested the usage of semaphores to avoid
race conditions and to synchronize the execution of the threads in the
context of the garbage collector thread. During the implementation phase, I
noticed that it is not possible. The Java threads can be involved in a receive
IPC from the semaphore thread, which will not response before a critical
section is free. If the garbage collector thread suspends a thread, the kernel
will cancel the IPC. In the meantime, a critical section can be freed by
another thread, which is not suspended yet. Now the semaphore thread tries
to send an IPC to the already suspended thread. The semaphore threads
will block until the IPC is successful. Therefore, the usage of semaphores in
this case caused deadlocks, because the suspended thread can be resumed
only after the garbage collector finishes and the garbage collector cannot
finish before the semaphore thread answers. A simple IPC send and receive
is sufficient for the notification about all stopped threads, so I do not use
the semaphores in the context of the garbage collector thread.

4.4.1 Stopping all threads

A thread invokes the garbage collector thread when it could not get memory
for a new object from the Java heap. The garbage collector calls the function
jthread_suspendall of the thread interface. The function iterates through
the double linked list of jthread thread data structures. For each thread,
the function invokes the l4_thread_ex_regs to set the instruction pointer
to the _l4threads_suspendall function.

_l4threads_suspendall first reserves space for the return address on
the stack by pushing a place holder address onto it. In the second step,
_l4threads_suspendall saves the state of the thread by pushing the
EFLAGS and the eight general purpose registers onto the stack. Then
a shared counter is incremented atomically. Each thread compares the
counter with the number of all threads that have to be stopped, which
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the garbage collector has set before in a global variable. If the thread
is not the last one, then it will call a function to sleep forever. Other-
wise the thread informs the garbage collector thread per IPC about the
successfully completion of stopping all threads and then it also sleeps forever.

The garbage collector thread waits after setting all threads to the
_l4threads_suspendall address for the notification IPC of the last thread
as mentioned above. After receiving the IPC, all threads beside the
garbage collector have stopped and they have saved their state on the
stack. Additional the garbage collector thread saves the old stack pointer
and the old instruction pointer for each stopped thread in the specific
jthread data structure, because the l4_thread_ex_regs returns them after
its invocation. The stopped threads do not know where their instruction
pointer was before they entered _l4threads_suspendall. Now the garbage
collector thread is able to scan safely the stack of the stopped threads for
Java object references and to handle the garbage collection.

Additionally the garbage collector thread checks that it accepts only
the notification IPC of a thread from its own address space. Moreover
the threads must verify that the IPC was really sent respectively received
and not canceled or aborted, because for example another service used the
l4_thread_ex_regs system call.

4.4.2 Resuming all threads

After the garbage collector finished his work, it calls the jthread_resumeall
function that the thread interface defines. Again, the garbage collector
thread iterates the list of all threads and prepares them for resuming at
their interrupted execution point.

First, the garbage collector thread replaces the mentioned place holder
address on the stack by the saved old instruction address, which will be
used as return address. Then it calculates the stack pointer address for
each thread, so that the address points to the last saved general purpose
register. Now the garbage collector uses the l4_thread_ex_regs system
call to set the stopped threads to a new instruction pointer marked as
_l4threads_resumepoint and to the calculated stack pointer.

_l4threads_resumepoint can now restore the state of the concrete
thread by copying the saved registers and the EFLAGS from the stack back
to the CPU registers, because the stack pointer is correctly set. Then the
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thread can simply return, because the real return address replaced the place
holder address.

4.5 Semaphore problems with timing con-

straints

The implementation of the semaphore interface of Kaffe by using the semaphore
library of L4Env made no problems, because I could directly use the functions
semaphore_down, semaphore_up and semaphore_down_timed of L4Env. The
timing values used by Kaffe and semaphore_down_timed are both in mil-
liseconds. One timing value of Kaffe is different to the one of the L4Env
semaphore. Kaffe interprets a timeout of zero as (possible) infinite waiting
and the L4Env semaphore implementation interprets it as a single attempt
to get the semaphore.

Problems caused the existing implementation of the semaphore_down_timed
of the L4Env. The attempt to enter a critical section with timing constraints
caused deadlocks or permitted threads to enter a critical section when the
section was not free. The following scenarios describe the reasons, which
caused the problems.

4.5.1 Deadlocks caused by semaphore down timed

The original implementation of semaphore_down_timed used an IPC call
with timing constraints to communicate with the semaphore thread and
thereby to enter the critical section. The semaphore thread enqueued the
calling thread when the critical section was not free. If a timeout occured,
the waiting thread called the semaphore thread again to inform about the
event and to induce the dequeuing of itself. The L4Env semaphore implemen-
tation used a normal semaphore_up for that purpose. The semaphore_up

call caused the semaphore thread to dequeue the first waiting thread. The
semaphore thread then tried to wake up the dequeued thread, assuming that
it wanted to enter the critical section. If no other thread tried in the mean-
time to enter the same critical section, the dequeued thread was the same
which caused the dequeuing. But, this thread with the timeout did not wait
any longer for any IPC from the semaphore. The semaphore_up implemen-
tation was not the right instrument to inform the semaphore thread about
the aborted attempt with a time out.
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4.5.2 Incorrect admissions to enter a semaphore

The reason for the above deadlock was also responsible for entering of non-
free critical sections. Assume two threads try to enter a critical section
that is not free. The first thread uses a semaphore_down without timing
constraints. It is enqueued by the semaphore thread. Now the second thread
tries to enter the critical section with a timing constraint and is enqueued
at the second position in the queue. The IPC of the second thread was
canceled by a time out and so it informes the semaphore thread about the
event using semaphore_up. The semaphore thread then dequeues the first
waiting thread, wakes it up and allows it to enter the critical section. The
first thread enters the non-free critical section and the semaphore thread did
not dequeue and remove the second thread that timed out.

4.5.3 Solution for getting a semaphore with timeouts

The scenarios show that the semaphore thread must know about the differ-
ent attempts to enter a semaphore — whether it is with or without a timing
constraint — to ensure a correct behavior. Moreover, the semaphore thread
has to mark the queued threads that entered with timing constraints. If the
semaphore thread tries to wakeup such marked threads, then it will use only
one attempt to send an IPC. If the thread is not ready to receive the IPC, the
semaphore will assume that the attempt to enter the semaphore was canceled
because of a timeout.

I introduced two new identifiers for an IPC call to the semaphore thread.
“BLOCKTIMED” means that a thread tries to enter a critical section with
timing constraints and “RELEASETIMED” informs the semaphore thread
about a canceled attempt. A thread will only inform the semaphore thread
about a cancellation when it happens in the receive phase of the calling
thread. Otherwise, it is not necessary, because the semaphore thread did
not receive the IPC and does not know of the attempt. I used the ability to
register a pointer for thread local data to mark and to easily find a thread
in the queue to avoid scanning the whole list. If a thread has a local data
pointer than it will be the one to the waiting queue entry for the thread,
which was called with timing constraints. If the semaphore thread tries to
wake up a thread that was canceled, but the information about the cancella-
tion, the IPC, has not arrived at the semaphore thread yet, then the wakeup
IPC would fail and the semaphore thread will wake up another thread. The
semaphore thread detects and ignores IPC arriving too late, because the
thread local data pointer is already set to NULL by the previous failed wake
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up attempt.

4.6 Files

At the start of the port I decided to use the ability of the indirection layer
to provide files for the JVM. Kaffe requires only its standard class library -
rt.jar, and the java class of the application. I statically linked these two files
to the JVM executable with the help of GNU’s OBJCOPY. Additionally I
modified KOPEN and KREAD so that they were able to read the files from the
executable of Kaffe.

Meanwhile the Dietlibc implementation for the Posix file functions is avail-
able. Therefore, I adapted KOPEN and KREAD to the normal posix file func-
tions. For testing and providing the files, I use the simple file server of the
L4VFS package that also links the provided files statically to the server’s
executable as I did first with the executable of Kaffe.

Additional, Kaffe requires environment variables for the path settings, which
describe where Kaffe can find its libraries (jar files), especially rt.jar. The
Dietlibc does not provide the function getenv, therefore I use a rudimental
implementation. My implementation of getenv tries to find and open a file
“kaffepath.env”, where the user of Kaffe can specify paths settings, for ex-
ample “BOOTCLASSPATH=rt.jar:kjc.jar”. If the file is not available, Kaffe
uses the standard settings of the paths.

4.7 Native libraries

Kaffe has to be started with the “Loader” service to use the ability of dynam-
ically linking libraries. Frank Mehnert enhanced the “Loader” and “L4exec”
service by the facility to support scanning the native libraries for a function
at runtime. With the enhancement, I was able to use the interface of the
“Loader” for the native library functions in Kaffe. At the moment, the file
providers used by the Dietlibc do not support the generic file provider in-
terface (generic fprov), which the “Loader” and “L4exec” service require to
open and to read files. Therefore, other file providers than the L4VFS servers
have to provide the native libraries.

The configuration system of Kaffe allows compiling the core and basic li-
braries for the JVM as shared ones. At the moment the configuration process
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makes trouble, because the configuration does not know about the system
DROPS. Therefore, Kaffe’s executable can only be linked statically.

4.8 Error handling

As described in 3.4.2 Kaffe can registrate its arithmetic exception handler
for the software exceptions 0 and 16 in the LIDT. The thread, which causes
a software exception by dividing by zero, is set by the kernel to the address
of Kaffe’s arithmetic exception handler. The kernel returns to the causing
thread and then, Kaffe is able to perform the Java exception handling -
searching for the corresponding Java catch handler in the executed Java bi-
nary code.

For the Java null pointer Java exception I had to modify the L4RM pager. I
extended it to registrate a address by the executed application, which it has
to use when a page fault on the first page occurs. The L4RM pager uses this
address to set the causing thread by the system call l4thread_ex_regs to
the registrated address. The causing thread then executes the null pointer
Java exception handler, which searches for the corresponding Java catch

handler.
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Chapter 5

Evaluation

In this chapter, I show the methods and the results of the measuring of some
aspects of Kaffe. First, I describe in general the used measuring methods
and test applications. In the second part, I discuss the resource usage, the
garbage collector invocations and the results for the Java test applications.

5.1 Measuring methods

Java test applications are necessary to evaluate the JVM. Kaffe itself is a
runtime environment and provides functionality for Java applications. It is
difficult to find / to produce Java applications, which consider all charac-
teristics that affect the performance of Kaffe. Different Java applications
can influence diverse aspects of the JVM and more or less affect the results.
Therefore, I describe consecutively the intention of the test Java applications.

I use the time stamp counter of the CPU to measure durations of the execu-
tion time of the Java applications. Additional, I evaluate the consumed time
of selective functions, which Kaffe often uses and I had to implement. In the
case of the selective functions I use only one Java thread. With this limi-
tation I try to reduce the probability that a Java thread interrupts another
one, which would adulterate the results.

5.1.1 Test application: matrix multiplication

The first Java Application multiplies 5x5 matrices with each other and per-
forms 65536 multiplications. The application distributes the multiplications
over a certain amount of threads, whereby the number of threads can be
configured at startup of the Java application.
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The intention of the application is to produce many operations like sum-
mations and multiplications, many method invocations and bad resource
usage. The application provokes the invocation of the garbage collector by
wasteful resource usage. I use “wasteful” in terms of using the Java class
java.lang.Long instead of the native type long. It causes for the resulting
matrices the allocation of new objects at the Java heap, which the Java ap-
plication only uses for the following multiplication and then not afterwards.

5.1.2 Test application: consumer and producer

The second Java Application is a consumer/producer scenario. The producer
generates elements (a product) and deposits it in a buffer. The consumer
takes elements from the buffer (consumes it). Getting and putting elements
to the buffer have to be synchronized to avoid overflows of the buffer caused
by the producer and concurrent extractions of elements by several consumers.

The Java application uses 30 consumers and 30 producers, whereby each
of them is a separate Java thread. All of them try to access the buffer 5000
times, the producer to put an element in the buffer and the consumer to get
one. The methods of the buffer Java class are synchronized, so that only
one Thread can get or put an Element from/to the buffer. The buffer is a
ring buffer and the available places for the elements can be configured at the
start of the Java application.

The intention of the application is to measure the influence of synchroniza-
tion efforts, which the JVM has to take for concurrent access to Java objects.
The scenario stresses the semaphore implementation and causes additionally
many thread switching.

5.1.3 Selective JVM functions

In the first step, I identified mainly four C functions, which Kaffe often uses
during the normal execution of classes and I had to implement.

• jthread_on_current_stack

• jthread_stackcheck

• jthread_extract_stack

• jthread_current
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jthread_on_current_stack determines, whether a location of an address
is on the stack of the current running thread. jthread_stackcheck

checks, whether enough space is on the actual stack of the running thread.
jthread_extract_stack determines the stack range of the running thread,
which the garbage collector has to scan. jthread_current returns the as-
sociated local data pointer of the native thread. The address points to the
jthread_t data structure, which describes a Java thread used by the JVM.

5.2 Test scenarios and environments

For evaluation, I decided to compare the execution of Kaffe in three different
environments, native Linux 2.6.7, L4Linux 2.2 on Fiasco and L4Env on
Fiasco. I name the different Kaffe execution environments in the diagrams
to this port as L4Env, native Linux as Linux and Kaffe on Fiasco as L4Linux.

The test environment was an Athlon XP 1800+ (1533Mhz = 133Mhz
x 11.5), 256 DDR RAM (133MHz), Board MSI KT3 Ultra (VIA KT 333). I
use L4Linux 2.2 with a ram disk, which includes the native Kaffe. Fiasco, all
services and the ram disk are located at an ext2fs partition on the harddisk.
GRUB loads it during computer startup in memory.

I wrote some C functions to take measurements with the time stamp counter,
which are in the directory kaffe\kaffevm\systems\drops-l4threads in
the two include files mess.h and mess_types.h. I add the measure points
to the source code of Kaffe for the native Linux and for the L4Env version.

The start measure point is the first instruction in the main function
of Kaffe, which is the same for Linux and L4Env. The end measure
point is in the function jthread_exit. This function exists separately for
each threading system. As end measure point I use the location in these
functions, where the last non-daemon thread exits a Java application. The
JVM terminates the execution of a Java application as described in the Java
specification, if the last non-deamon thread exists.

I measured the execution time of the matrix application. One to 56
threads calculate the 65536 matrix multiplications, whereby the steps
from 1 to 16 threads are in steps of power by 2 and from 16 to 56
threads in steps of 8. The results in figure 5.1 shows that Kaffe on
Linux and L4Linux executes the Java application faster than the L4Env
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Figure 5.1: matrix application, execution time, Athlon XP 1800+(1533MHz)

version. The reason I lead back to the four jthread functions men-
tioned above. The table 5.1 shows the best and the average time of
the execution time of these functions. The invocations of the L4Env
version are two to three times slower then the one of Linux. The Linux
jthread_stackcheck invokes jthread_on_currentstack and it invokes
jthread_current, therefore the invocations of these functions are so high.
The measured tacts for jthread_current and jthread_on_currentstack

are not directly comparable, because the L4Env implementation of these
functions not call one another. But, for jthread_stackcheck and
jthread_extract_stack it is possible. The last column shows the time
difference for the jthread_stackcheck, which is mainly is the reason for
the time difference of the complete execution time between Kaffe on L4Env
and Linux.

The figure 5.2 shows the results for the producer and consumer sce-
nario. Kaffe on L4Linux requires about one dimension more time then the
L4Env version for a small buffer size. The gap between L4Env and L4Linux
becomes smaller with more buffers, but it is still a factor of two (buffer size
= 50, L4Env circa 2.7s, L4Linux circa 7s). The results heavily depend on
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Function Kaffe Invoca- Total Noninter- Min Average Tact difference

jthreads* tions tacts dependence tacts tacts between L4Env

invocations and Linux divi-

ded by frequence

(in ms)

current L4Env 3.549 7,71e+05 3.549 00 217 —

Linux 2,35e+07 1,23e+09 3.802 39 52

on current- L4Env 4.621 1,07e+06 4.621 112 232 —

stack Linux 2,35e+07 1,27e+09 4.180 42 54

stackcheck L4Env 2,35e+07 2,95e+09 2,35e+07 110 126 1046

Linux 2,35e+07 1,35e+09 2,35e+07 44 57

extractstack L4Env 148 3,20e+05 148 697 2161 0

Linux 126 2,70e+04 126 26 215

Table 5.1: Matrix application, 1 thread, Java heap 2 MB, comparison be-
tween jthread functions, Athlon XP 1800+(1533MHz)

the schedule of the threads and the semaphore invocations, which are better
for L4Env than for L4Linux shown in figure 5.3. I cannot explain, why the
semaphore invocations are so much higher for Kaffe on Linux and L4Linux
then for the L4Env version. I guess it has to do with the schedule of the
threads. I also tried to measure the behavior on Linux, but the results for
all measure points (different buffer size) fluctuate heavily between 4 seconds
and 30 seconds. Therefore, I would have to describe the Linux results as
scatter plot in figure 5.2 and thus it is not shown.

5.3 Resource usage

Kaffe can be configured at startup to use a maximal amount of memory
for the Java heap, the initial heap size and the size of heap increments for
expansion. The minimal heap size, which worked in my test cases, was 1.5
Mbytes. Below it, the JVM stops with the error “Internal error: caught
an unexpected exception”. Therefore, I used for the tests as minimal heap
memory 2 MB.

Kaffe’s memory amount for Linux I determine with
“ps o user,pid,vsize,fname”. The table 5.2 shows the vmsize for
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5.4. GARBAGE COLLECTOR

Figure 5.2: producer / consumer scenario, execution time, Athlon XP
1800+(1533MHz)

both applications. For the matrix application the minimum amount of
memory is 5.5 MB plus the used memory for the heap. Each additional
thread adds the amount of about 64 Kbytes, because this is the standard
stack size for the native threads. The producer/consumer application
requires about 11.5 Mbytes. This scenario uses three classes and more
functionality from the Java thread package than the matrix scenario like
synchronization. This does not explain why the memory amount is about 4
MB higher than for the matrix application.

5.4 Garbage Collector

The JVM invokes the garbage collector when no memory is available. Kaffe
calls the function

• jthread_suspendall to stop all Java threads and

• jthread_unsuspendall to resume their execution.

If the garbage collector has to stop n threads, then the following invocations
are necessary:

- n times the systemcall l4_thread_ex_regs,
- one receive IPC by the garbage collector,
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Figure 5.3: producer / consumer scenario, semaphore invocations, Athlon
XP 1800+(1533MHz)

- one send IPC by the last stopped thread.

For resuming all threads

- n times the systemcall l4_thread_ex_regs

is necessary. The time of the duration of a l4_thread_ex_regs sys-
tem call and an IPC depends mainly on the used hardware. I measured
the total duration from the start to the end of the matrix Java application
shown in figure 5.4. L4Env Kaffe calls the garbage collector more often, but
the absolute required time was less. Figure 5.5 shows the consumed time
per garbage collector invocation. I think the reason for the better values for
L4Env are the stopping and resuming of the Java threads. In L4Linux each
Linux thread is a separate L4 task. Therefore, a higher overhead in address
switching is necessary.
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Invocation Linux VMsize

threads in kB

./java -ms2M -mx2M Matrix 1 5 7.612

./java -ms4M -mx4M Matrix 1 5 9.680

./java Matrix 1 5 11.308

./java -ms2M -mx2M Matrix 4 9 7.816

./java -ms4M -mx4M Matrix 4 9 9.884

./java Matrix 4 9 11.512

./java -ms2M -mx2M ProducerConsumer 1 64 11.628

./java -ms4M -mx4M ProducerConsumer 1 64 13.696

./java ProducerConsumer 1 64 15.324

./java -ms2M -mx2M ProducerConsumer 4 64 11.628

./java -ms4M -mx4M ProducerConsumer 4 64 13.696

./java ProducerConsumer 4 64 15.324

Table 5.2: Memory usage of Kaffe on Linux ascertain with ps, Athlon XP
1800+(1533MHz)

5.5 Code size, modifications and mainte-

nance

About 3000 lines of source code were necessary to adapt the L4Env
environment to Kaffe (without the code for measurement). I modified the
core of Kaffe to prevent a race condition by adding a semaphore and I
had to include for the “Loader” and “L4Exec” service a include file to be
able to resolve native functions at runtime. No other changes at the core
source code of the JVM were necessary, because of the interfaces for the
threading and semaphore implementation of Kaffe. The implementations
of this port for Kaffe are an additional operating system and an additional
threading system, which are clearly separated from the source code of the
other implementations.

At least the files “kaffevm”, “rt.jar” and “libloader.s.so” are necessary
to run Kaffe at DROPS. The size of these files (circa):

kaffevm 2300 kBytes - JVM binary

rt.jar 450 kBytes - Java library

libloader.s.so 600 kBytes - Loader native library
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Figure 5.4: matrix application, complete execution time of the garbage col-
lector thread, Athlon XP 1800+(1533MHz)

The basic library “rt.jar” is a minimal version, which only provides the
basic classes to run simple Java applications. Additional, beside the kernel
“fiasco” and the basic services “sigma0” and “rmgr’ the following services
of the L4Env environment are necessary: “names”, “dm phys”, “rtc”,
“simple ts”, “name server”, “l4exec”, “loader”, “simple file server” and
“tftp”. Optional the “con” and “term con” services are useful to show
console outputs from Java applications.

During the port I decided to use the build system of Kaffe. I had
some trouble to use it solely with L4Env without modifications. Therefore, I
use the build system of Kaffe to compile the basic parts of Kaffe as libraries.
For the resulting binary of L4Env Kaffe I use the DROPS build system
with the Kaffe libraries. The integration into the build system of DROPS is
almost finished.
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Figure 5.5: matrix application, execution time of the garbage collector per
invocation, Athlon XP 1800+(1533MHz)
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Chapter 6

Conclusion

6.1 Further tasks

The users often use Java in the context with Graphical User Interfaces
(GUI), like AWT and Swing. Additional, Java is often used with Servlet
containers like Apache Tomcat and EJB (Enterprise Java Bean) component
containers like JBoss.

For DROPS exists a real-time window environment named DOpE.
The adaptation to DOpE could allow the usage of GUI Java applications.
I do not know, whether DOpE provides all functionality required by GUI
Java applications, but this analysis and implementation is an interesting task.

The container for EJB and Servlets requires mainly an implementa-
tion for the socket interface, which has to use the existent IP stack, named
FLIPS, and the corresponding network card drivers. In the context of a
diploma a student already implements the socket interface for the Dietlibc,
therefore it could be usable in the near future for Kaffe.

A complex task is the analysis of Kaffe to determine, whether it is
possible to support realtime Java applications and how this could be
achieved. It would be necessary to identify the critical parts in term of
predictability like the garbage collector and others. The Java community
already researches this area for a long time and a good start is the study of
their Real-Time Specification [Bollella et al., 2000] for Java.
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6.2 Summary

The main goal of this work was to port a JVM to DROPS by the usage of
L4Env, which has been achieved. Especial that Java threads run as real
L4Threads, classes and native libraries can be reloaded at runtime, which
makes Kaffe useable. The core of the JVM works, but the big Java API is
widely untested and can cause errors, which have to be found and fixed.
Parts of the Java API, which make use of unimplemented native functions
partly due the Dietlibc and the port, will not run. In the future the missing
functionality will be added.

Some extensions to the L4Env services like the semaphore library
(deadlock problem), the L4Thread library (stack pointer issues), the
Loader/L4Exec service (symbol finding at runtime) and the L4RM pager
(null pointer handling) were necessary. The port of Kaffe to DROPS was pos-
sible due the good support by the maintainers of these services and packages.

Finally, a special thank goes to my tutors Ronald Aigner and Martin
Pohlack, who instructed and supported me. Additional, due the work on
Kaffe I really learned to understand some aspects of Java and operating
systems, especial microkernels.
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